
Rootkit Programming
Premeeting

Manuel Andreas

Chair of IT-Security (I20)
Prof. Dr. Claudia Eckert

Technical University of Munich

January 30, 2025



Definitions

What is a
Rootkit?

“ A rootkit is a collection of com-
puter software, typically malicious,
designed to enable access to a
computer or an area of its soft-
ware that is not otherwise allowed
(for example, to an unauthorized
user) and often masks its existence
or the existence of other software.
— Wikipedia ”



Course Contents
In this course you will create your own rootkit (aka your own piece
of malware) with the following features:
▶ Escalate privileges to root
▶ Hide files on disk
▶ Hide processes
▶ Hide network connections
▶ . . .

Your rootkit will take the form of:
▶ Userspace Rootkit
▶ Linux Kernel Module (LKM)
▶ Hypervisor
▶ . . .

Further, we will focus on the detection of rootkits using
▶ Virtual Machine Introspection (VMI) / Memory Forensics



Teaching Goals

▶ How the kernel, the loader and the libc interact with each
other to execute a program

▶ Details about the Linux kernel boot process (e.g. initramfs)
▶ Linux kernel hacking

▶ How to create your own kernel module
▶ How the Linux kernel tracing system works
▶ Getting familiar with fundamental linux subsystems

▶ How modern hypervisors can interact with and inspect its
running VMs



Prerequisites

We do not have formal requirements for students who want to join
the course.

However, we strongly recommend being familiar with the
following:
▶ How to write a C program and how pointers work
▶ What a Syscall is
▶ Basic knowledge about IT Security (IN0042) and how an

operating system works in general (as taught in IN0009)

Having seen or worked with assembly is a plus!



Organizational Matters

▶ The course has 16 slots
▶ We will meet once a week
▶ You will work with a partner in teams of two

▶ Phase I:
▶ Weekly exercises requiring you to implement new rootkit /

detection mechanisms
▶ Solutions are presented & discussed the following week

▶ Phase II:
▶ Project phase
▶ Come up with your own hiding or detection technique
▶ Final presentation on your concept



Organizational Matters

▶ The course has 16 slots
▶ We will meet once a week
▶ You will work with a partner in teams of two
▶ Phase I:

▶ Weekly exercises requiring you to implement new rootkit /
detection mechanisms

▶ Solutions are presented & discussed the following week

▶ Phase II:
▶ Project phase
▶ Come up with your own hiding or detection technique
▶ Final presentation on your concept



Organizational Matters

▶ The course has 16 slots
▶ We will meet once a week
▶ You will work with a partner in teams of two
▶ Phase I:

▶ Weekly exercises requiring you to implement new rootkit /
detection mechanisms

▶ Solutions are presented & discussed the following week
▶ Phase II:

▶ Project phase
▶ Come up with your own hiding or detection technique
▶ Final presentation on your concept



Registration

Awesome!
How can
I join?

▶ No letter of motivation
▶ Instead, solve a small qualification task

▶ Create a driver for our custom virtio
device1 (in the form of a Linux Kernel
Module) in order to retrieve a secret
value (flag).

▶ Download the challenge & submit your
flag at https://courses.sec.in.
tum.de/rootkit

▶ Due at 19.02.2024 23:59 (end of
matching period)

▶ FCFS based on your hand-in time

▶ Nonetheless, do not forget to register
yourself in the matching system!

1The device is completely made-up in QEMU

https://courses.sec.in.tum.de/rootkit
https://courses.sec.in.tum.de/rootkit


Qualification Challenge Hints
▶ First steps:

1. Download appropriate Linux kernel sources (v6.11.11)2.
2. Place our provided kernel configuration (config-6.11.11) into

the kernel source tree and rename it to .config.
3. Build the kernel: make all
4. You can now start building your own Linux kernel module.

▶ For testing your module: insert it into our remote VM and
debug via printk. For a more sophisticated setup, you may
build the patched QEMU and setup your own local VM.

▶ If you simply want to reproduce our remote setup, we ship an
appropriate Dockerfile.

▶ To figure out what type of data you must sent to our device
we supply source code as a QEMU patch
▶ Relevant parts implemented in virtio-flagbrah.c and

virtio_ids.h
▶ Our challenge runs on an x86-64 CPU with KVM enabled.

2https://cdn.kernel.org/pub/linux/kernel/v6.x/linux-6.
11.11.tar.xz

https://cdn.kernel.org/pub/linux/kernel/v6.x/linux-6.11.11.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v6.x/linux-6.11.11.tar.xz


Qualification Challenge - Useful Resources

▶ General Linux kernel modules info:
https://linux-kernel-labs.github.io/refs/
heads/master/labs/kernel_modules.html

▶ VirtIO LKM driver template:
https://docs.kernel.org/driver-api/virtio/
writing_virtio_drivers.html

▶ Make sure to use correct memory for data transfers:
https://docs.kernel.org/core-api/
dma-api-howto.html#what-memory-is-dma-able

https://linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.html
https://docs.kernel.org/driver-api/virtio/writing_virtio_drivers.html
https://docs.kernel.org/driver-api/virtio/writing_virtio_drivers.html
https://docs.kernel.org/core-api/dma-api-howto.html#what-memory-is-dma-able
https://docs.kernel.org/core-api/dma-api-howto.html#what-memory-is-dma-able


▶ Contact me at andreas@sec.in.tum.de

Questions?



▶ Contact me at andreas@sec.in.tum.de

Questions?


