Rootkit Programming

Premeeting

Manuel Andreas

Chair of IT-Security (120)
Prof. Dr. Claudia Eckert
Technical University of Munich

January 30, 2025

Definitions

A rootkit is a collection of com-
puter software, typically malicious,
designed to enable access to a

What |S a computer or an area of its soft-

ware that is not otherwise allowed
RO Otk|t7 (for example, to an u.nauthorized

user) and often masks its existence

or the existence of other software.

— Wikipedia ’ ’

Course Contents

In this course you will create your (aka your own piece
of malware) with the following features:

» Escalate privileges to root
» Hide files on disk

» Hide processes

» Hide network connections
>

Your rootkit will take the form of:
» Userspace Rootkit
» Linux Kernel Module (LKM)
» Hypervisor
> ..

Further, we will focus on the using

» Virtual Machine Introspection (VMI) / Memory Forensics

Teaching Goals

» How the kernel, the loader and the libc interact with each
other to execute a program

» Details about the Linux kernel boot process (e.g. initramfs)

» Linux kernel hacking
» How to create your
» How the Linux kernel tracing system works
» Getting familiar with
» How modern hypervisors can with and its
running VMs

Prerequisites

We have formal requirements for students who want to join
the course.
However, we being familiar with the
following:

» How to write and how work

» What a 15

» Basic knowledge about IT Security (IN0042) and how an
operating system works in general (as taught in INO009)

Having seen or worked with is a plus!

Organizational Matters

» The course has
» We will meet once a week

» You will work with a partner in teams of

Organizational Matters

» The course has
» We will meet once a week

» You will work with a partner in teams of

» Phase I:
> exercises requiring you to implement new rootkit /
detection mechanisms
» Solutions are presented & discussed the following week

Organizational Matters

» The course has
» We will meet once a week
» You will work with a partner in teams of
» Phase I:
> exercises requiring you to implement new rootkit /
detection mechanisms
» Solutions are presented & discussed the following week
» Phase Il

> phase
» Come up with your own hiding or detection technique
» Final presentation on your concept

Registration

> letter of motivation
» Instead, solve a

» Create a driver for our custom virtio
device! (in the form of a Linux Kernel

AWGSO me I Module) in order to retrieve a secret

value (flag).
H OW can » Download the challenge & submit your
flag at https://courses.sec.in.
| ? tum.de/rootkit
» Due at (end of
matching period)
> based on your hand-in time

» Nonetheless, do not forget to
yourself in the !

1The device is completely made-up in QEMU

https://courses.sec.in.tum.de/rootkit
https://courses.sec.in.tum.de/rootkit

Qualification Challenge Hints

» First steps:
1. Download appropriate Linux kernel sources ()2.
2. Place our provided kernel configuration () into
the kernel source tree and rename it to
3. Build the kernel: make all
4. You can now start building your own Linux kernel module.
» For testing your module: insert it into our remote VM and
debug via . For a more sophisticated setup, you may
build the patched QEMU and setup your own local VM.

» If you simply want to reproduce our remote setup, we ship an
appropriate .
» To figure out what type of data you must sent to our device
we supply source code as a QEMU
» Relevant parts implemented in virtio-flagbrah.c and
virtio ids.h
» Our challenge runs on an x86-64 CPU with enabled.

2https://cdn.kernel.org/pub/linux/kernel/v6.x/linux-6.
11.11.tar.xz

https://cdn.kernel.org/pub/linux/kernel/v6.x/linux-6.11.11.tar.xz
https://cdn.kernel.org/pub/linux/kernel/v6.x/linux-6.11.11.tar.xz

Qualification Challenge - Useful Resources

» General Linux kernel modules info:
https://linux-kernel-labs.github.io/refs/
heads/master/labs/kernel modules.html

| 2 :

https://docs.kernel.org/driver-api/virtio/

writing virtio drivers.html

» Make sure to use correct memory for data transfers:
https://docs.kernel.org/core-api/
dma-api-howto.html#what-memory-is-dma-able

https://linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/kernel_modules.html
https://docs.kernel.org/driver-api/virtio/writing_virtio_drivers.html
https://docs.kernel.org/driver-api/virtio/writing_virtio_drivers.html
https://docs.kernel.org/core-api/dma-api-howto.html#what-memory-is-dma-able
https://docs.kernel.org/core-api/dma-api-howto.html#what-memory-is-dma-able

» Contact me at andreas@sec.in.tum.de

» Contact me at andreas@sec.in.tum.de

Questions?

