Kick-off: Data Privacy Technologies

Chair for IT Security / I20 Prof. Dr. Claudia Eckert Technical University of Munich

Georg Bramm georg.bramm@aisec.fraunhofer.de

Immanuel Kunz immanuel.kunz@aisec.fraunhofer.de

July 9, 2024

1. Who are we

- 2. Organization
- 3. Requirements
- 4. Grading
- 5. Time Table
- 6. Topics

Who we are

Who we are in numbers

Zahl der Mitarbeitenden

Forschungsvolumen (in Mio €)

Where we are

Where we are

This seminar

will be organized as a scientific conference:

- 1. Familiarization phase (2 Weeks)
- 2. Writing phase (12 Weeks)
- 3. Review phase (2 Weeks)
- 4. Improvement phase (1 Week)
- 5. Talk preparation (min 1 Week)
- 6. Talk and Discussion

Requirements

Report

- Written report in the form of a scientific paper
- Mandatory length of 10 pages (without references and appendix)
- Usage of LATEX is mandatory
- Formatting with the provided LATEX-Style (IEEE 2-column)
- Review
 - Every Student creates 2 anonymous reviews
 - Review template will be provided
 - Approximately 1/2 page
 - Every Student writes a rebuttal
- Presentation
 - 30 minutes presentation
 - 15 minutes discussion

Grading

Grading considers all contributions to this seminar:

- 1. Scientific Paper (SoK or specific research question(s)) (50%)
 - Contents, Accuracy, Style, Effort, Grasp
- 2. Mandatory Peer Review (10%)
- 3. Presentation (40%)
 - Slides, Execution, Contents, Understandability (30%)
 - Discussion (10%)

Time Table (tentative)

09.07.24	Kick-off meeting (today)
14.08.24	Send choice of assignment/topic to supervisor
16.08.24	Topic Assignment
tbd	Introduction to scientific writing (recommended)
as soon as possible	Organize <u>at least one</u> meeting with your supervisor.
10.01.25	Deadline for draft paper
13.01.25	Review Assignments
23.01.25	Deadline for (2x) review submission(s)
31.01.25	Deadline for own rebuttal
31.01.25	Deadline for final paper
31.01.25	Deadline for presentation
and 14.02.25	Presentations and discussion

between 03.02.25 and 14.02.25

Before we go on....

... any questions so far?

Topics

- Privacy Preserving Computation (supervisor: Bramm)
 - Privacy-Preserving Data Analysis
 - Privacy-Preserving Search
- Privacy-enhancing cryptography in ML (supervisor: Bramm)
 - Proof of Learning
 - Proof of Training
 - Proof of Intelligence
- Privacy Engineering (supervisor: Kunz)
 - Privacy Threat Modeling and Risk Analysis
 - Privacy Data Flow Analysis
 - Privacy in the Software Development Lifecycle
 - Methods for Privacy by Design
 - Privacy, Security, and Data Protection

Topic: Privacy-Preserving Data Analysis / Bramm

- Understand and present a privacy preserving computation concept in data analysis based on (either)
 - federated learning
 - differential privacy

- garbled circuits
- secure multiparty comp.
- homomorphic encryption
- Compare the chosen approach regarding advantages and disadvantages for each participating party.

Privacy-Preserving Search / Bramm

- Understand and present privacy preserving searchable encryption concepts based on post quantum primitives.
- Survey the state of the art in different existing approaches.

Case 1: ownership resolution

- Given some publicly hosted model.
- An adversary can reverse that model an generate a stolen one.
- How does the original owner of the original input data cryptographically prove that he generated the model?

🖉 Fraunhofer

Case 2: delegated computation

- A central ML model on a server. The central model is generated using distributed/colaborative learning.
- An adversary deviates from the protocol and wants to attack the central model.
- Is there a way to cryptographically prove that a worker is misbehaving? ?

Fraunhofer

Old solution attempts

Fraunhofer

Old solution problems

Fraunhofer

Why a proof would help ?

🗾 Fraunhofer

AISEC

Topic: Proof of Learning / Bramm

PoL

- Blockchain based approaches
- Consensus based approaches
- also other approaches

Topic: Proof of Training / Bramm

ΡοΤ

- Zero Knowledge based approaches
- zkSnarks, zkStarks approaches

Topic: Proof of Intelligence / Bramm

Pol (corner/special case)

- > Proof of not only input data utilization, but also on the training application itself
- Consensus-based approach.
- Bittensor / Tao

Topic: Privacy Threat Modeling and Risk Analysis / Kunz

- Compare privacy and security threat modeling / risk assessment approaches
- LINDDUN, LINDDUN GO, STRIDE, Kill chains
- Which types of threats can be found with the different frameworks?

🖉 Fraunhofer

AISEC

Topic: Privacy Data Flow Analysis / Kunz

- Various approaches exist for tracking personal data in software applications
- Analyze and compare different proposals
- ▶ How can privacy engineers be supported with these tools? Which threats can('t) they find?

Topic: Privacy in the Software Development Lifecycle / Kunz TI SFRaunhofer

- There are software development lifecycles
- ► There are *secure* software development lifecycles
- Compare SDLCs regarding their privacy focus

Topic: Methods for Privacy by Design / Kunz

Figure: Privacy by Design method by Gürses et al.

- Many scientific approaches propose privacy by design methods
- Select a number of papers regarding a specific PbD aspect (like data minimization)
- Review, compare, and discuss them; possibly apply to a use case

Topic: Privacy, Security, and Data Protection / Kunz

- What are the overlaps and conflicts between privacy, security and data protection?
- How is "privacy" regulated by the GDPR and other regulations?
- Review methods and privacy-enhancing technologies in the context of *data protection by design*

Procedure

- 1. Matching and Topic assignment
 - Register via DocMatching
 - After the matching concludes, we'll get in touch with the participants.
 - If you want to deregister
 - do so timely to avoid penalty or brace yourself for a 5.0.
 - Participants send top 3 topics via email to Georg Bramm until 16.08.24, we'll assign the topics.
- 2. Familiarization phase:
 - Literature research.
 - Get an overview of your topic by reading initial literature
 - Research additional follow-up or proceeding literature
 - Create paper bibliothek.
 - Create paper structure.
- 3. Introduction to scientific writing possibly provided by chair.
- 4. ... (next slide)

Procedure

- 3. ... (previous slide)
- 4. Writing phase.
 - one initial meeting with supervisor where you present your writing plans
 - and discuss and solve questions with your supervisor
 - ideally: a second meeting with your supervisor for final questions / hints, before:
- 5. Paper submission
 - The first draft must be acceptable!
 - No submission \Rightarrow 5.0.
 - Violation of page limit \Rightarrow 5.0.
 - No "buffering" of pages using images with little informational value or oversize.
- 6. Review phase.
 - You are given 2 papers to review
 - A good review should be about 1/2 page.
 - It should contain: Summarization, Critiques, Suggestions, Hints for improvement, Formal (Spelling, Figures, ...).
- 7. Final Presentations. (30min/15min each)

See first slide for contact emails.