
Jokubas Trinkunas

Technical University of Munich

Department of Informatics

Chair for IT Security

05.12.2018

Glamdring: Automatic Application Partitioning for
Intel SGX

• During the execution of the trusted function multiple ocalls are

needed (to access functionality which is not available in the enclave,

for example syscalls)

• Enclave crossing significant performance penalty (enclave state

has to be saved and restored)

2Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Revision: Intel SGX

• Approach considered by: HAVEN and Graphene

• SCONE: Similar approach without LibOS, but with

enhanced C library instead

• Pros:

o Run unmodified applications (low dev. effort)

• Cons:

o Large TCB (both security-sensitive and insensitive

application code and data are inside the enclave +

additional libraries)

3Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Design alternatives: Complete enclave interface

• Approach considered by: VC3 (Verifiable

Confidential Cloud Computing)

• Protects distributed map/reduce computations using

enclaves (only read/write operations)

• Pros:

o Smaller TCB compared to previous approach

• Cons:

o Limited applicability (predefined interface

specific applications only, e.g. Hadoop with VC3)

4Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Design alternatives: Predefined restricted enclave
interface

• Idea: Only a subset of code handles sensitive data,

other code is not security-sensitive

• Past work has shown that partitioning can be done

manually

 Glamdring goal: automatic partitioning!

• Pros:

o Minimal TCB through code partitioning

o Fewer syscalls need ocalls (instruction to leave the

enclave) better performance!

• Cons:

• Untrusted memory access has to be allowed

(app data exists outside the enclave)

5Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Design alternatives: Application-specific enclave
interface

• Glamdring – a framework for protecting existing C applications by

executing security-sensitive code in an Intel SGX enclave.

6Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

What is Glamdring?

• Identify security-sensitive code relevant to a security policy (how to

determine the minimal TCB?)

• Prevent interfaces from violating security policy

• Avoid performance degradation (enclave crossings?)

7Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Glamdring: Challenges / Requirements

8Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Glamdring Framework Design

• Goal: Run Memcached (key-value pair storage) in an enclave

• 2 commands: Get or Update

9Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Example Application

• Glamdring must know which application data is sensitive because

sensitive data is application-specific!

• Developer provides sources (inputs) and sinks (outputs) of security-

sensitive data by annotating variables whose values must be protected

• Glamdring relies on the fact that security-sensitive data is protected

when it is exchanged between a trusted client and the application.

 Client has to encrypt and sign the data

 Both the client and the enclave code use symmetric AES-GCM

encryption; the key is established upon enclave creation!

10Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Code Annotation

• Secure-sensitive data

– get/update

command + request

data

• This data is encrypted

and signed by the

trusted client

• Why we should not

annotate socket

read() call?

11Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Code Annotation: Memcached Example

encrypted

command

read()
encrypted

command

APP

• Goal: Identify all security-sensitive statements in the program that have

dependencies on all annotated statements

• Static program analysis: Program Dependence Graph Static dataflow

analysis + Static backward slicing Partition Specification

12Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Code Analysis

• Captures the control and data dependencies

in the program

• Nodes = Statements = {S1, S2, S3, S4, S5}

• Edges:

• Control Dependence Edge

• One Statement determines if another gets

executed

• Data Dependence Edge

• Data defined in a statement is used in

another statement

13Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Code Analysis: Program Dependence Graph

• Confidentiality: Using Graph Reachability identify all nodes which you

can reach from annotated node (follow the forward edges)

14Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Code Analysis: Static Dataflow Analysis

#pragma glamdring sensitive data (cmd)

15Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Code Analysis: Static backward slicing

#pragma glamdring sensitive data (cmd)

• Integrity: Using Graph Reachability identify all nodes which can reach

annotated node (follow the back edges)

• Union of nodes found contains the set of all security-sensitive

statements, this set is denoted from now as S.

16Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Code Analysis: Union

• Glamdring produces a partition specification (PS) from the set of

security-sensitive statements

• PS contains a set of security-sensitive functions, memory allocations and

global variables to protect

17Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Code Partitioning

• Some enclave interface functions may be called too frequently it

results in frequent enclave crossing which reduces performance!

• Solution: configurable threshold, if exceeded Glamdring adds function to

the enclave

18Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Code Partitioning: Enclave boundary relocation

• Produces source-level partitioning of the app based on the PS

• Hardens the enclave boundary against malicious input

• Result: Set of enclave and outside source files, along with an enclave

specification, which can be compiled using the Intel SGX

19Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Code Generation & Hardening

• Relies on the LLVM/Clang compiler

toolchain to rewrite the preprocessed

C source code Abstract Syntax

Tree

• Code generation from PS 3 step:

1. Moving function definitions into the

enclave

2. Generating ecalls and ocalls

3. Handling memory allocation

20Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Code Generation: Source-to-Source Transform

• Code generator creates an enclave version and an outside version for

every source file

• Remove all functions not listed in the PS from the enclave version

• Remove all listed enclave functions from the outside version

21Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Code Generation: Moving function definitions

• By traversing direct call expressions

in each function, code generator

identifies the ecalls and ocalls

• If the caller is an untrusted function

and the callee is an enclave function

 the callee is transformed to an

ecall.

• If the caller is an enclave function and

the callee is an untrusted function

the callee is transformed to an ocall.

22Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Code Generation: Generating ocalls and ecalls

• Function pointer arguments to ecalls and ocalls are special cases

• Example: ecall passes a function pointer targeting a function on the

outside, the program will fail when the enclave attempts to call that

function pointer directly

23Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Code Generation: Handling function pointers as
interface arguments

• Code generator uses PS to decide which mallocs must be placed inside

the enclave

• For malloc calls listed in the PS nothing needs to be done because a

malloc call inside the enclave allocates memory inside!

• One special case possible:

• A function must allocate memory outside

• Arises when placing non-sensitive code into the enclave when:

• Partitioning at function level

• Moving functions into the enclave using Enclave Boundary Relocation

• Solution Malloc is replaced by an ocall to the outside!

24Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Code Generation: Handling memory allocation

• There is still some attack surface mostly during the code generation

phase protection is needed!

• Possible Attack (infeasible program paths):

25Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Code Hardening

• To prevent such attacks Glamdring applies runtime checks on global

variables and parameters passed into and out of ecalls and ocalls.

• assert(dump_flag == 0) before if statement

26Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Code Hardening: Runtime Environment Checks

• Evaluated on 3 different applications:

• Memcached

• LibreSSL

• Digital Bitbox Bitcoin Wallet

• Glamdring Framework Size: 5000 LoC + Static Analysis libraries

27Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Evaluation

28Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Evaluation: TCB size

29Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Evaluation: Comparison with Graphene and
SCONE

• Native: 600k req. per second

• SCONE: 300k req. per second,

SCONE does additional

optimizations such as user-

level threading

• Graphene: 75k req. per second

• Glamdring: 150k req. per

second

• Enclave transitions dominate

the cost of the request

handling batch requests for

better performance (to 200k)

30Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Evaluation: Performance

• Glamdring is able to automatically partition the application into trusted

and untrusted parts

• This allows us to port untrusted application parts into Intel SGX enclaves

• Which leads to much smaller TCB than prior approaches with acceptable

performance

31Jokubas Trinkunas | Trusted Execution Environemnts | Wintersemester 18/19

Conclusion

