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Outline
• Problem Statement


• Existing solutions and their weaknesses


• Code-Pointer Integrity 


• Implementation-dependant weakness (Related Paper)


• Discussion
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‣ Places code and data segments at random 
addresses


‣ Complicates code-reuse (ROP)


‣ Defeated by pointer leaks and side channel attacks




Seminar: Control Flow Integrity based Security Andreas Keller

Existing Solutions
• Adress Space Layout Randomisation (ASLR)

• Stack Cookies

!4



Seminar: Control Flow Integrity based Security Andreas Keller

Existing Solutions
• Adress Space Layout Randomisation (ASLR)

• Stack Cookies

!4

‣ Protect return addresses on the stack


‣ Only protect against continuous buffer overflows



Seminar: Control Flow Integrity based Security Andreas Keller

Existing Solutions
• Adress Space Layout Randomisation (ASLR)

• Stack Cookies

• Data Execution Prevention (DEP)

!4



Seminar: Control Flow Integrity based Security Andreas Keller

Existing Solutions
• Adress Space Layout Randomisation (ASLR)

• Stack Cookies

• Data Execution Prevention (DEP)

• Control-Flow Integrity

!4



Seminar: Control Flow Integrity based Security Andreas Keller

Existing Solutions
• Adress Space Layout Randomisation (ASLR)

• Stack Cookies

• Data Execution Prevention (DEP)

• Control-Flow Integrity

• Memory Safety

!4



Seminar: Control Flow Integrity based Security Andreas Keller

Control-Flow Integrity

!5



Seminar: Control Flow Integrity based Security Andreas Keller

Control-Flow Integrity
• Limit the set of functions that can be called at each call 

site

!5



Seminar: Control Flow Integrity based Security Andreas Keller

Control-Flow Integrity
• Limit the set of functions that can be called at each call 

site

• Coarse-grained CFI can be bypassed

!5



Seminar: Control Flow Integrity based Security Andreas Keller

Control-Flow Integrity
• Limit the set of functions that can be called at each call 

site

• Coarse-grained CFI can be bypassed

• Finest-grained CFI has 10-21% performance overhead
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Memory Safety
• Guarantees memory objects can only be accessed by pointers 

properly based on the specific object

➡ Completely prevents control-flow hijacks

• Requires rewriting code in memory-safe languages or 
retrofitting memory safety onto existing code

• Requires runtime checks to verify correctness of pointer 
computations

➡ Introduces significant performance overhead (≥2x when 
retrofitted)
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Code-Pointer Integrity
• Goals:


‣ Prevent all control-flow hijack attacks


‣ Significantly less performance overhead than state-of-
the-art

• Idea:


‣ Use memory-safety but only protect code-pointers
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Regular 
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buf
q

int *q = buf + input; 
*q = input2; 
… 
(*func_ptr)();

• Type-based static analysis

• Move only code pointers to safe memory


➡ Isolate safe memory on instruction level

• Keep memory layout unchanged

2.5%

memory accesses

97.5%

memory accesses
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int foo() { 
  char buf[16]; 
  int r; 
  r = scanf(“%s”, buf); 
  return r; 
}

Regular 
Stack

Safe 
Stack

ret address

buf
r

• Split into regular and safe stack

• Statical check during compile 
which objects are safe

• Only keep unsafe objects on 
the regular stack (e.g. arrays)
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Memory
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… 

(*func_ptr)();
func_ptr = struct_ptr->f;

func_ptr

struct_ptr

func1_ptr

➡   Indirect Pointers have to be protected as well
➡   Extend static analysis to include indirect pointers
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Summary
• CPI guarantees memory safety for all sensitive pointers 

(code pointers and pointers to sensitive pointers)

➡ Guaranteed protection against control-flow hijack 
attacks enabled by memory bugs

• Keeps performance overhead low by not protecting data 
pointers

!13



Seminar: Control Flow Integrity based Security Andreas Keller

Design

!14



Seminar: Control Flow Integrity based Security Andreas Keller

Design

• Static analysis on source code during compilation

!14



Seminar: Control Flow Integrity based Security Andreas Keller

Design

• Static analysis on source code during compilation

• Adding safe memory region while keeping the original 
memory layout intact

!14



Seminar: Control Flow Integrity based Security Andreas Keller

Design

• Static analysis on source code during compilation

• Adding safe memory region while keeping the original 
memory layout intact

• Separating the safe region from the regular region using 
instruction level protection:


‣ Hardware segment protection on x86-32


‣ Information hiding on x86-64 and ARM
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Security analysis
• CPI and CPS protect against all attacks from RIPE 

(Runtime intrusion prevention evaluator)

• CPI correctness proof in paper guarantees security 
against future attacks

• Does not protect against data-only attacks
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CPU2006:
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Performance numbers from SPEC CPU2006 Benchmark



Seminar: Control Flow Integrity based Security Andreas Keller

Security Weakness on x64 
and ARM

!18



Seminar: Control Flow Integrity based Security Andreas Keller

Security Weakness on x64 
and ARM

• Original Paper: 


➡ Information hiding is secure because no pointer to the 
safe region exists in unsafe memory

!18



Seminar: Control Flow Integrity based Security Andreas Keller

Security Weakness on x64 
and ARM

• Original Paper: 


➡ Information hiding is secure because no pointer to the 
safe region exists in unsafe memory

• Paper by Evans et. al.:


➡ Shows there is a way to find the safe area using side 
channel attack
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Information Hiding 
Implementation

1) Randomly choose an address to serve as base address 
for safe memory region

2) Store address in of the segment registers provided by x64

➡ No pointer to the safe region exists in regular memory

➡ 48 bit address space in x64 CPU makes guessing 
impractical, most guesses would cause crashing
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Attack Description
1) Timing Side-channel Attack

2) Data Collection

3) Locate Safe Region

4) Attack Safe Region
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Mitigation of the Weakness

• Implement Hardware Segmentation in x86-64


• Switch to software fault isolation


➡ Introduces additional performance overhead of ~5%


• Reduce feasibility of side channel attack by changing 
implementation of information hiding


➡ Replace linear table with hash table or two-level lookup 
table
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Discussion

Questions?
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References:

• Code-Pointer Integrity - Kuznetsov et. al. (2014)


• Presentation: Code-Pointer Integrity - Kuznetsov (OSDI 2014)


• Missing the Point(er) - Evans et. al. (2015)


• Getting the Point(er) - Kuznetsov et. al. (2015)


