
Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Integrity
Volodymyr Kuznetsov, László Szekeres, Mathias Payer, George Candea

R. Sekar, Dawn Song

�1

Seminar: Control Flow Integrity based Security Andreas Keller

Outline
• Problem Statement

• Existing solutions and their weaknesses

• Code-Pointer Integrity

• Implementation-dependant weakness (Related Paper)

• Discussion

!2

Seminar: Control Flow Integrity based Security Andreas Keller

Problem Statement

!3

Seminar: Control Flow Integrity based Security Andreas Keller

Problem Statement
• Attackers exploit bugs to cause

memory corruption

!3

Seminar: Control Flow Integrity based Security Andreas Keller

Problem Statement
• Attackers exploit bugs to cause

memory corruption

• Steal sensitive data and/or
execute code on the system

!3

Seminar: Control Flow Integrity based Security Andreas Keller

Problem Statement
• Attackers exploit bugs to cause

memory corruption

• Steal sensitive data and/or
execute code on the system

!3

Memory

func_ptr

shell
code

buf
q

int *q = buf + input;
*q = input2;
…

(*func_ptr)();

Seminar: Control Flow Integrity based Security Andreas Keller

Problem Statement
• Attackers exploit bugs to cause

memory corruption

• Steal sensitive data and/or
execute code on the system

!3

Memory

func_ptr

shell
code

buf

q

int *q = buf + input;
*q = input2;
…

(*func_ptr)();

Seminar: Control Flow Integrity based Security Andreas Keller

Problem Statement
• Attackers exploit bugs to cause

memory corruption

• Steal sensitive data and/or
execute code on the system

!3

Memory

func_ptr

shell
code

buf

q

int *q = buf + input;
*q = input2;
…

(*func_ptr)();

Seminar: Control Flow Integrity based Security Andreas Keller

Existing Solutions

!4

Seminar: Control Flow Integrity based Security Andreas Keller

Existing Solutions
• Adress Space Layout Randomisation (ASLR)

!4

Seminar: Control Flow Integrity based Security Andreas Keller

Existing Solutions
• Adress Space Layout Randomisation (ASLR)

!4

‣ Places code and data segments at random
addresses

‣ Complicates code-reuse (ROP)

‣ Defeated by pointer leaks and side channel attacks

Seminar: Control Flow Integrity based Security Andreas Keller

Existing Solutions
• Adress Space Layout Randomisation (ASLR)

• Stack Cookies

!4

Seminar: Control Flow Integrity based Security Andreas Keller

Existing Solutions
• Adress Space Layout Randomisation (ASLR)

• Stack Cookies

!4

‣ Protect return addresses on the stack

‣ Only protect against continuous buffer overflows

Seminar: Control Flow Integrity based Security Andreas Keller

Existing Solutions
• Adress Space Layout Randomisation (ASLR)

• Stack Cookies

• Data Execution Prevention (DEP)

!4

Seminar: Control Flow Integrity based Security Andreas Keller

Existing Solutions
• Adress Space Layout Randomisation (ASLR)

• Stack Cookies

• Data Execution Prevention (DEP)

• Control-Flow Integrity

!4

Seminar: Control Flow Integrity based Security Andreas Keller

Existing Solutions
• Adress Space Layout Randomisation (ASLR)

• Stack Cookies

• Data Execution Prevention (DEP)

• Control-Flow Integrity

• Memory Safety

!4

Seminar: Control Flow Integrity based Security Andreas Keller

Control-Flow Integrity

!5

Seminar: Control Flow Integrity based Security Andreas Keller

Control-Flow Integrity
• Limit the set of functions that can be called at each call

site

!5

Seminar: Control Flow Integrity based Security Andreas Keller

Control-Flow Integrity
• Limit the set of functions that can be called at each call

site

• Coarse-grained CFI can be bypassed

!5

Seminar: Control Flow Integrity based Security Andreas Keller

Control-Flow Integrity
• Limit the set of functions that can be called at each call

site

• Coarse-grained CFI can be bypassed

• Finest-grained CFI has 10-21% performance overhead

!5

Seminar: Control Flow Integrity based Security Andreas Keller

Memory Safety

!6

Seminar: Control Flow Integrity based Security Andreas Keller

Memory Safety
• Guarantees memory objects can only be accessed by pointers

properly based on the specific object

!6

Seminar: Control Flow Integrity based Security Andreas Keller

Memory Safety
• Guarantees memory objects can only be accessed by pointers

properly based on the specific object

➡ Completely prevents control-flow hijacks

!6

Seminar: Control Flow Integrity based Security Andreas Keller

Memory Safety
• Guarantees memory objects can only be accessed by pointers

properly based on the specific object

➡ Completely prevents control-flow hijacks

• Requires rewriting code in memory-safe languages or
retrofitting memory safety onto existing code

!6

Seminar: Control Flow Integrity based Security Andreas Keller

Memory Safety
• Guarantees memory objects can only be accessed by pointers

properly based on the specific object

➡ Completely prevents control-flow hijacks

• Requires rewriting code in memory-safe languages or
retrofitting memory safety onto existing code

• Requires runtime checks to verify correctness of pointer
computations

!6

Seminar: Control Flow Integrity based Security Andreas Keller

Memory Safety
• Guarantees memory objects can only be accessed by pointers

properly based on the specific object

➡ Completely prevents control-flow hijacks

• Requires rewriting code in memory-safe languages or
retrofitting memory safety onto existing code

• Requires runtime checks to verify correctness of pointer
computations

➡ Introduces significant performance overhead (≥2x when
retrofitted)

!6

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Integrity

!7

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Integrity
• Goals:

‣ Prevent all control-flow hijack attacks

‣ Significantly less performance overhead than state-of-
the-art

!7

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Integrity
• Goals:

‣ Prevent all control-flow hijack attacks

‣ Significantly less performance overhead than state-of-
the-art

• Idea:

‣ Use memory-safety but only protect code-pointers

!7

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Separation

!8

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Separation

!8

Memory

func_ptr

buf
q

int *q = buf + input;
*q = input2;
…
(*func_ptr)();

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Separation

!8

Memory

func_ptr

buf
q

int *q = buf + input;
*q = input2;
…
(*func_ptr)();

• Type-based static analysis

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Separation

!8

Regular
Memory

Safe
Memory

func_ptr

buf
q

int *q = buf + input;
*q = input2;
…
(*func_ptr)();

• Type-based static analysis

• Move only code pointers to safe memory

➡ Isolate safe memory on instruction level

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Separation

!8

Regular
Memory

Safe
Memory

func_ptr

buf
q

int *q = buf + input;
*q = input2;
…
(*func_ptr)();

• Type-based static analysis

• Move only code pointers to safe memory

➡ Isolate safe memory on instruction level

• Keep memory layout unchanged

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Separation

!8

Regular
Memory

Safe
Memory

func_ptr

buf
q

int *q = buf + input;
*q = input2;
…
(*func_ptr)();

• Type-based static analysis

• Move only code pointers to safe memory

➡ Isolate safe memory on instruction level

• Keep memory layout unchanged

2.5%

memory accesses

97.5%

memory accesses

Seminar: Control Flow Integrity based Security Andreas Keller

Safestack

!9

Seminar: Control Flow Integrity based Security Andreas Keller

Safestack

!9

int foo() {
 char buf[16];
 int r;
 r = scanf(“%s”, buf);
 return r;
}

Stack

ret address

r

buf

Seminar: Control Flow Integrity based Security Andreas Keller

Safestack

!9

int foo() {
 char buf[16];
 int r;
 r = scanf(“%s”, buf);
 return r;
}

Regular
Stack

Safe
Stack

ret address

r

buf

• Split into regular and safe stack

Seminar: Control Flow Integrity based Security Andreas Keller

Safestack

!9

int foo() {
 char buf[16];
 int r;
 r = scanf(“%s”, buf);
 return r;
}

Regular
Stack

Safe
Stack

ret address

buf

r

• Split into regular and safe stack

• Statical check during compile
which objects are safe

Seminar: Control Flow Integrity based Security Andreas Keller

Safestack

!9

int foo() {
 char buf[16];
 int r;
 r = scanf(“%s”, buf);
 return r;
}

Regular
Stack

Safe
Stack

ret address

buf
r

• Split into regular and safe stack

• Statical check during compile
which objects are safe

Seminar: Control Flow Integrity based Security Andreas Keller

Safestack

!9

int foo() {
 char buf[16];
 int r;
 r = scanf(“%s”, buf);
 return r;
}

Regular
Stack

Safe
Stack

ret address

buf
r

• Split into regular and safe stack

• Statical check during compile
which objects are safe

• Only keep unsafe objects on
the regular stack (e.g. arrays)

Seminar: Control Flow Integrity based Security Andreas Keller

CPS Memory Layout

!10

Seminar: Control Flow Integrity based Security Andreas Keller

CPS Memory Layout

!10

Safe Heap

Safe memory
(code pointers)

Regular memory
(non-code-pointer data)

Regular Heap

Code (Read-Only)

Safe
Stack
(thread1)

Safe
Stack
(thread2) …

Regular
Stack
(thread1)

Regular
Stack
(thread2) …

Instruction-level isolation

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Integrity

!11

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Integrity
Protecting only code pointers is not enough:

!11

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Integrity
Protecting only code pointers is not enough:

!11

Memory

int *q = p + input;
*q = input2;
…

(*func_ptr)();

func_ptr

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Integrity
Protecting only code pointers is not enough:

!11

Memory

int *q = p + input;
*q = input2;
…

(*func_ptr)();

func_ptr

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Integrity
Protecting only code pointers is not enough:

!11

Memory

int *q = p + input;
*q = input2;
…

(*func_ptr)();

func_ptr

struct_ptr

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Integrity
Protecting only code pointers is not enough:

!11

Memory

int *q = p + input;
*q = input2;
…

(*func_ptr)();
func_ptr = struct_ptr->f;

func_ptr

struct_ptr

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Integrity
Protecting only code pointers is not enough:

!11

Memory

int *q = p + input;
*q = input2;
…

(*func_ptr)();
func_ptr = struct_ptr->f;

func_ptr

struct_ptr

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Integrity
Protecting only code pointers is not enough:

!11

Memory

int *q = p + input;
*q = input2;
…

(*func_ptr)();
func_ptr = struct_ptr->f;

func_ptr

struct_ptr

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Integrity
Protecting only code pointers is not enough:

!11

Memory

int *q = p + input;
*q = input2;
…

(*func_ptr)();
func_ptr = struct_ptr->f;

func_ptr

struct_ptr

func1_ptr

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Integrity
Protecting only code pointers is not enough:

!11

Memory

int *q = p + input;
*q = input2;
…

(*func_ptr)();
func_ptr = struct_ptr->f;

func_ptr

struct_ptr

func1_ptr

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Integrity
Protecting only code pointers is not enough:

!11

Memory

int *q = p + input;
*q = input2;
…

(*func_ptr)();
func_ptr = struct_ptr->f;

func_ptr

struct_ptr

func1_ptr

➡ Indirect Pointers have to be protected as well

Seminar: Control Flow Integrity based Security Andreas Keller

Code-Pointer Integrity
Protecting only code pointers is not enough:

!11

Memory

int *q = p + input;
*q = input2;
…

(*func_ptr)();
func_ptr = struct_ptr->f;

func_ptr

struct_ptr

func1_ptr

➡ Indirect Pointers have to be protected as well
➡ Extend static analysis to include indirect pointers

Seminar: Control Flow Integrity based Security Andreas Keller

CPI Memory Layout

!12

Safe memory
(sensitive pointers and metadata)

Regular memory
(non-sensitive data)

Safe Heap Regular Heap

Code (Read-Only)

Safe
Stack
(thread1)

Safe
Stack
(thread2) …

Regular
Stack
(thread1)

Regular
Stack
(thread2) …

Instruction-level isolation

Seminar: Control Flow Integrity based Security Andreas Keller

CPI Memory Layout

!12

Safe memory
(sensitive pointers and metadata)

Regular memory
(non-sensitive data)

Safe Heap Regular Heap

Code (Read-Only)

Safe
Stack
(thread1)

Safe
Stack
(thread2) …

Regular
Stack
(thread1)

Regular
Stack
(thread2) …

Instruction-level isolation

Seminar: Control Flow Integrity based Security Andreas Keller

Summary

!13

Seminar: Control Flow Integrity based Security Andreas Keller

Summary
• CPI guarantees memory safety for all sensitive pointers

(code pointers and pointers to sensitive pointers)

!13

Seminar: Control Flow Integrity based Security Andreas Keller

Summary
• CPI guarantees memory safety for all sensitive pointers

(code pointers and pointers to sensitive pointers)

➡ Guaranteed protection against control-flow hijack
attacks enabled by memory bugs

!13

Seminar: Control Flow Integrity based Security Andreas Keller

Summary
• CPI guarantees memory safety for all sensitive pointers

(code pointers and pointers to sensitive pointers)

➡ Guaranteed protection against control-flow hijack
attacks enabled by memory bugs

• Keeps performance overhead low by not protecting data
pointers

!13

Seminar: Control Flow Integrity based Security Andreas Keller

Design

!14

Seminar: Control Flow Integrity based Security Andreas Keller

Design

• Static analysis on source code during compilation

!14

Seminar: Control Flow Integrity based Security Andreas Keller

Design

• Static analysis on source code during compilation

• Adding safe memory region while keeping the original
memory layout intact

!14

Seminar: Control Flow Integrity based Security Andreas Keller

Design

• Static analysis on source code during compilation

• Adding safe memory region while keeping the original
memory layout intact

• Separating the safe region from the regular region using
instruction level protection:

‣ Hardware segment protection on x86-32

‣ Information hiding on x86-64 and ARM

!14

Seminar: Control Flow Integrity based Security Andreas Keller

Security analysis

!15

Seminar: Control Flow Integrity based Security Andreas Keller

Security analysis
• CPI and CPS protect against all attacks from RIPE

(Runtime intrusion prevention evaluator)

!15

Seminar: Control Flow Integrity based Security Andreas Keller

Security analysis
• CPI and CPS protect against all attacks from RIPE

(Runtime intrusion prevention evaluator)

• CPI correctness proof in paper guarantees security
against future attacks

!15

Seminar: Control Flow Integrity based Security Andreas Keller

Security analysis
• CPI and CPS protect against all attacks from RIPE

(Runtime intrusion prevention evaluator)

• CPI correctness proof in paper guarantees security
against future attacks

• Does not protect against data-only attacks

!15

Seminar: Control Flow Integrity based Security Andreas Keller

Performance Benchmark
Performance in SPEC
CPU2006:

!16

Seminar: Control Flow Integrity based Security Andreas Keller

Performance summary

!17

Performance numbers from SPEC CPU2006 Benchmark

Seminar: Control Flow Integrity based Security Andreas Keller

Security Weakness on x64
and ARM

!18

Seminar: Control Flow Integrity based Security Andreas Keller

Security Weakness on x64
and ARM

• Original Paper:

➡ Information hiding is secure because no pointer to the
safe region exists in unsafe memory

!18

Seminar: Control Flow Integrity based Security Andreas Keller

Security Weakness on x64
and ARM

• Original Paper:

➡ Information hiding is secure because no pointer to the
safe region exists in unsafe memory

• Paper by Evans et. al.:

➡ Shows there is a way to find the safe area using side
channel attack

!18

Seminar: Control Flow Integrity based Security Andreas Keller

Information Hiding
Implementation

!19

Seminar: Control Flow Integrity based Security Andreas Keller

Information Hiding
Implementation

1) Randomly choose an address to serve as base address
for safe memory region

!19

Seminar: Control Flow Integrity based Security Andreas Keller

Information Hiding
Implementation

1) Randomly choose an address to serve as base address
for safe memory region

2) Store address in of the segment registers provided by x64

!19

Seminar: Control Flow Integrity based Security Andreas Keller

Information Hiding
Implementation

1) Randomly choose an address to serve as base address
for safe memory region

2) Store address in of the segment registers provided by x64

➡ No pointer to the safe region exists in regular memory

!19

Seminar: Control Flow Integrity based Security Andreas Keller

Information Hiding
Implementation

1) Randomly choose an address to serve as base address
for safe memory region

2) Store address in of the segment registers provided by x64

➡ No pointer to the safe region exists in regular memory

➡ 48 bit address space in x64 CPU makes guessing
impractical, most guesses would cause crashing

!19

Seminar: Control Flow Integrity based Security Andreas Keller

Attack Description

!20

Seminar: Control Flow Integrity based Security Andreas Keller

Attack Description
1) Timing Side-channel Attack

!20

Seminar: Control Flow Integrity based Security Andreas Keller

Attack Description
1) Timing Side-channel Attack

2) Data Collection

!20

Seminar: Control Flow Integrity based Security Andreas Keller

Attack Description
1) Timing Side-channel Attack

2) Data Collection

3) Locate Safe Region

!20

Seminar: Control Flow Integrity based Security Andreas Keller

Attack Description
1) Timing Side-channel Attack

2) Data Collection

3) Locate Safe Region

4) Attack Safe Region

!20

Seminar: Control Flow Integrity based Security Andreas Keller

Mitigation of the Weakness

• Implement Hardware Segmentation in x86-64

• Switch to software fault isolation

➡ Introduces additional performance overhead of ~5%

• Reduce feasibility of side channel attack by changing
implementation of information hiding

➡ Replace linear table with hash table or two-level lookup
table

!21

Seminar: Control Flow Integrity based Security Andreas Keller

Discussion

Questions?

!22

References:

• Code-Pointer Integrity - Kuznetsov et. al. (2014)

• Presentation: Code-Pointer Integrity - Kuznetsov (OSDI 2014)

• Missing the Point(er) - Evans et. al. (2015)

• Getting the Point(er) - Kuznetsov et. al. (2015)

